98 research outputs found

    Image velocimetry for clouds with relaxation labeling based on deformation consistency

    Get PDF
    Correlation-based cloud tracking has been extensively used to measure atmospheric winds, but still difficulty remains. In this study, aiming at developing a cloud tracking system for Akatsuki, an artificial satellite orbiting Venus, a formulation is developed for improving the relaxation labeling technique to select appropriate peaks of cross-correlation surfaces which tend to have multiple peaks. The formulation makes an explicit use of consistency inherent in the type of cross-correlation method where template sub-images are slid without deformation; if the resultant motion vectors indicate a too-large deformation, it is contradictory to the assumption of the method. The deformation consistency is exploited further to develop two post processes; one clusters the motion vectors into groups within each of which the consistency is perfect, and the other extends the groups using the original candidate lists. These processes are useful to eliminate erroneous vectors, distinguish motion vectors at different altitudes, and detect phase velocities of waves in fluids such as atmospheric gravity waves. As a basis of the relaxation labeling and the post processes as well as uncertainty estimation, the necessity to find isolated (well-separated) peaks of cross-correlation surfaces is argued, and an algorithm to realize it is presented. All the methods are implemented, and their effectiveness is demonstrated with initial images obtained by the ultraviolet imager onboard Akatsuki. Since the deformation consistency regards the logical consistency inherent in template matching methods, it should have broad application beyond cloud tracking

    Early Results of a Wildfire Monitoring Microsatellite UNIFORM-1

    Get PDF
    UNIFORM (UNiversity International FORmation Mission) is a capacity building program in microsatellite field including satellites, ground stations, and data platform. The program, sponsored by the Ministry of Education, Culture, Sports and Technology (MEXT) of Japan, aims to increase the number of players in the small satellite community through education of both domestic and international young engineers, by providing them with an opportunity to study, build, and operate microsatellites. The first satellite of the program, UNIFORM-1 was launched on May 24th 2014. UNIFORM-1 is a 50-kg earth observation satellite whose mission is wildfiremonitoring using a microbolometer. Since then it has been in operation, successfully capturing several events on the ground including wildfires and volcanic activities. This paper presents in-orbit results of UNIFORM-1 mission, critical bus subsystems including EPS and AOCS, and lessons learned from its operations

    The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes

    Get PDF
    The near-Earth carbonaceous asteroid 162173 Ryugu is thought to have been produced from a parent body that contained water ice and organic molecules. The Hayabusa2 spacecraft has obtained global multi-color images of Ryugu. Geomorphological features present include a circum-equatorial ridge, east/west dichotomy, high boulder abundances across the entire surface, and impact craters. Age estimates from the craters indicate a resurfacing age of ≲ 106 years for the top 1-meter layer. Ryugu is among the darkest known bodies in the Solar System. The high abundance and spectral properties of boulders are consistent with moderately dehydrated materials, analogous to thermally metamorphosed meteorites found on Earth. The general uniformity in color across Ryugu’s surface supports partial dehydration due to internal heating of the asteroid’s parent body.Additional co-authors: N Namiki, S Tanaka, Y Iijima, K Yoshioka, M Hayakawa, Y Cho, M Matsuoka, N Hirata, N Hirata, H Miyamoto, D Domingue, M Hirabayashi, T Nakamura, T Hiroi, T Michikami, P Michel, R-L Ballouz, O S Barnouin, C M Ernst, S E Schröder, H Kikuchi, R Hemmi, G Komatsu, T Fukuhara, M Taguchi, T Arai, H Senshu, H Demura, Y Ogawa, Y Shimaki, T Sekiguchi, T G Müller, T Mizuno, H Noda, K Matsumoto, R Yamada, Y Ishihara, H Ikeda, H Araki, K Yamamoto, S Abe, F Yoshida, A Higuchi, S Sasaki, S Oshigami, S Tsuruta, K Asari, S Tazawa, M Shizugami, J Kimura, T Otsubo, H Yabuta, S Hasegawa, M Ishiguro, S Tachibana, E Palmer, R Gaskell, L Le Corre, R Jaumann, K Otto, N Schmitz, P A Abell, M A Barucci, M E Zolensky, F Vilas, F Thuillet, C Sugimoto, N Takaki, Y Suzuki, H Kamiyoshihara, M Okada, K Nagata, M Fujimoto, M Yoshikawa, Y Yamamoto, K Shirai, R Noguchi, N Ogawa, F Terui, S Kikuchi, T Yamaguchi, Y Oki, Y Takao, H Takeuchi, G Ono, Y Mimasu, K Yoshikawa, T Takahashi, Y Takei, A Fujii, C Hirose, S Nakazawa, S Hosoda, O Mori, T Shimada, S Soldini, T Iwata, M Abe, H Yano, R Tsukizaki, M Ozaki, K Nishiyama, T Saiki, S Watanabe, Y Tsud

    Deficiency of calcium/calmodulin-dependent serine protein kinase disrupts the excitatory-inhibitory balance of synapses by down-regulating GluN2B

    Get PDF
    Calcium/calmodulin-dependent serine protein kinase (CASK) is a membrane-associated guanylate kinase (MAGUK) protein that is associated with neurodevelopmental disorders. CASK is thought to have both pre- and postsynaptic functions, but the mechanism and consequences of its functions in the brain have yet to be elucidated, because homozygous CASK-knockout (CASK-KO) mice die before brain maturation. Taking advantage of the X-chromosome inactivation (XCI) mechanism, here we examined the synaptic functions of CASK-KO neurons in acute brain slices of heterozygous CASK-KO female mice. We also analyzed CASK-knockdown (KD) neurons in acute brain slices generated by in utero electroporation. Both CASK-KO and CASK-KD neurons showed a disruption of the excitatory and inhibitory (E/I) balance. We further found that the expression level of the N-methyl-d-aspartate receptor subunit GluN2B was decreased in CASK-KD neurons and that overexpressing GluN2B rescued the disrupted E/I balance in CASK-KD neurons. These results suggest that the down-regulation of GluN2B may be involved in the mechanism of the disruption of synaptic E/I balance in CASK-deficient neurons

    Heliocentric Distance Dependence of Zodiacal Light Observed by Hayabusa2#

    Full text link
    Zodiacal light (ZL) is sunlight scattered by interplanetary dust particles (IDPs) at optical wavelengths. The spatial distribution of IDPs in the Solar System may hold an important key to understanding the evolution of the Solar System and material transportation within it. The number density of IDPs can be expressed as n(r)rαn(r) \sim r^{-\alpha}, and the exponent α1.3\alpha \sim 1.3 was obtained by previous observations from interplanetary space by Helios 1/2 and Pioneer 10/11 in the 1970s and 1980s. However, no direct measurements of α\alpha based on ZL observations from interplanetary space outside Earth's orbit have been performed since then. Here, we introduce initial results for the radial profile of the ZL at optical wavelengths observed over the range 0.76-1.06 au by ONC-T aboard the Hayabusa2# mission in 2021-2022. The ZL brightness we obtained is well reproduced by a model brightness, although there is a small excess of the observed ZL brightness over the model brightness at around 0.9 au. The radial power-law index we obtained is α=1.30±0.08\alpha = 1.30 \pm 0.08, which is consistent with previous results based on ZL observations. The dominant source of uncertainty arises from the uncertainty in estimating the diffuse Galactic light (DGL).Comment: 22 pages, 19 figures, 4 tables, accepted for publication by Earth, Planets and Spac

    Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2

    Get PDF
    The thermal infrared imager TIR onboard Hayabusa2 has been developed to investigate thermo-physical properties of C-type, near-Earth asteroid 162173 Ryugu. TIR is one of the remote science instruments on Hayabusa2 designed to understand the nature of a volatile-rich solar system small body, but it also has significant mission objectives to provide information on surface physical properties and conditions for sampling site selection as well as the assessment of safe landing operations. TIR is based on a two-dimensional uncooled micro-bolometer array inherited from the Longwave Infrared Camera LIR on Akatsuki (Fukuhara et al., 2011). TIR takes images of thermal infrared emission in 8 to 12 μm with a field of view of 16×12∘ and a spatial resolution of 0.05∘ per pixel. TIR covers the temperature range from 150 to 460 K, including the well calibrated range from 230 to 420 K. Temperature accuracy is within 2 K or better for summed images, and the relative accuracy or noise equivalent temperature difference (NETD) at each of pixels is 0.4 K or lower for the well-calibrated temperature range. TIR takes a couple of images with shutter open and closed, the corresponding dark frame, and provides a true thermal image by dark frame subtraction. Data processing involves summation of multiple images, image processing including the StarPixel compression (Hihara et al., 2014), and transfer to the data recorder in the spacecraft digital electronics (DE). We report the scientific and mission objectives of TIR, the requirements and constraints for the instrument specifications, the designed instrumentation and the pre-flight and in-flight performances of TIR, as well as its observation plan during the Hayabusa2 mission
    corecore